

# ANALOG PRESSURE SENSOR DATA SHEET

The REV Robotics Analog Pressure Sensor is a 5V sensor that can measure pressures up to 200 PSI. It outputs an analog voltage that is proportional to the measured pressure.

### **APPLICATIONS**

- · Real-time pressure feedback
- · Pressure-based decisions
  - Is there enough pressure left for a specific action?
- Determining leak rates
- Prototyping
  - How much pressure does a specific action take?
- · Measuring actuation pressure
- · Pressure feedback to dashboard

#### **SPECIFICATIONS**

| Typical Supply Voltage (V <sub>cc</sub> ) | 5VDC         |
|-------------------------------------------|--------------|
| Output Voltage Range                      | 0.5 - 4.5VDC |
| Accuracy                                  | 1.5%         |
| Response time                             | ≤ 2.0ms      |
| Current Draw                              | ≤ 10mA       |

| V <sub>OUT</sub> at Pressure (p)                           |  |  |
|------------------------------------------------------------|--|--|
| $V_{OUT} = V_{CC} \times (0.004 \times p + 0.1) \pm 1.5\%$ |  |  |

| Working Pressure Range | 0 - 200 PSI |
|------------------------|-------------|
| Max Force Pressure     | 348 PSI     |
| Burst Pressure         | 725 PSI     |
| Working Temperature    | 0 - 85°C    |
| Storage Temperature    | 0 - 100°C   |
| Fitting Thread         | NPT 1/8-27  |
| Weight                 | 0.09 lbs    |

## **CONNECTION DIAGRAM**





## **CALCULATING PRESSURE**

The output voltage of the sensor (VOUT) depends on the supply voltage (VCC) and the pressure (p):

$$V_{OUT} = V_{CC} \times (0.004 \times p + 0.1)$$

Given the output voltage, pressure can be calculated as follows:

$$p = 250 \left( \frac{V_{OUT}}{V_{CC}} \right) - 25$$

It may be helpful to normalize the output voltage against a known pressure since variances in the supply voltage may introduce error. To normalize against a known pressure:

- 1. Bring the system up to a know pressure  $(p_0)$ .
- 2. Measure the sensor's output voltage  $(V_0)$ .
- 3. Calculate the normalized supply voltage  $(V_N)$ :

$$V_N = \frac{V_0}{(0.004 \times p_0 + 0.1)}$$

4. Calculate pressure based on the normalized supply voltage  $(V_N)$ :

$$p = 250 \left( \frac{V_{OUT}}{V_N} \right) - 25$$