
FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC

f

Java SDK Startup Guide

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC

TABLE OF CONTENTS

1 Getting Started .. 1

1.1 Introduction .. 1

1.2 Prerequisites .. 1

1.3 Additional Resources ... 2

2 Android Operating System Basics ... 2

2.1 What is Andriod? .. 2

2.2 Andriod Studio .. 2

2.3 Java .. 2

3 Installing Android Studio ... 3

4 Installing the FIRST Global SDK .. 7

5 Using your Robot .. 10

5.1 Creating an Op Mode .. 10

5.2 Building the Robot Controller App .. 15

6 Troubleshooting .. 19

Revision Release Date Document Changes
Rev 0 4/12/2017 Initial Release
Rev 1 5/24/2017 Minor Install Instruction Change, fixed numbering error, minor edits for clarity

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 1

1 Getting Started
1.1 Introduction

The FIRST Global Challenge uses an Android-based control system for its competition robots. This document provides
basic information on how to install, configure and use the FIRST Global Software Development Kit (SDK) to program the
robot using Java in the Android Studio interface. Programming is how teams customize the behavior of the robot.

Many teams will program in Java, but it is not required. Teams can program their robots using other methods such as
the Block programing interface covered in the FIRST Global Block Programming Guide available on the FIRST Global
resources webpage.

The robot program will need to be completely written in one language; it is not recommended to try to mix and match
code.

1.2 Prerequisites

In order to complete the exercises that are contained in this document, it is assumed you have done the following:

1. Read and complete all steps in the “Control System Startup Guide” from the FIRST Global Website.
2. Be familiar with setting up a configuration via the “Configure Robot” menu selection on the Driver Station.
3. Have an understanding of the basic syntax of java and be familiar with concepts such as classes, members,

methods and program structure. Oracle offers free java tutorials: http://docs.oracle.com/javase/tutorial/
4. Completed one of the following 2-motor basic robot examples.

a. Follow the miniBot Build example (Figure 1) on the FIRST Global resources webpage.
b. Visit the Robot Kit Instructional Videos web page, and view the Practice-Bot Build Walkthrough video.

Figure 1: Completed miniBot Example

http://first.global/resources/technical-information/robot-kit-manuals/
http://first.global/resources/technical-information/robot-kit-manuals/
http://first.global/resources/technical-information/
http://docs.oracle.com/javase/tutorial/
http://first.global/resources/technical-information/robot-kit-manuals/
http://first.global/resources/technical-information/robot-kit-instructional-videos/

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 2

1.3 Additional Resources

This document only provides a very basic introduction to Android programming and how it relates to the FIRST Global
Robot Controller platform. Participants are encouraged to learn more about Java and Android development from other
resources.

The official Android Developer’s website:

http://developer.android.com/index.html

The Android Developer’s website has a series of Android development tutorials (including video-based interactive
training):

http://developer.android.com/training/index.html

There is an excellent free tutorial from Oracle that teaches basic and advanced Java programming:

http://docs.oracle.com/javase/tutorial/

2 Android Operating System Basics
2.1 What is Andriod?

The FIRST Global Platform uses an Android tablet as the Driver station controller and a REV Robotics
Control Hub as the robot brain. Android is the operating system(OS) that runs on both of these
devices. Similar to a laptop that has Microsoft Windows or MacOS as its operating system, a tablet
has its own operating system that manages the device’s hardware and software components.

Google produces, develops, and maintains the Android code. This source code is available to the public under an open
source license. Google provides free developer tools that can be used to write applications or “apps” for the Android OS.

2.2 Andriod Studio

The official development tool for Android development is known as Android Studio. The Driver Station and Control Hub
run special apps for the FIRST Global competition. These apps are created using Android Studio.

Android Studio is known as an Integrated Development Environment (IDE). Android Studio is a software package that
you install onto a computer or laptop. It has a suite of tools, such as a text editor, debugger, and other tools to help
author, build and install apps for the Android operating system.

App development might seem intimidating at first. However, for the FIRST Global robots, the process has been
simplified. The FIRST Global SDK includes a framework that makes it easier for a novice to program their robot. This
framework takes care of much of the more complex programming tasks. The student or mentor can focus on
programming the robot behavior and not have to worry about developing the framework of the Android app.

2.3 Java

Java is a popular text-based, object-oriented programming language. Android apps are written using the Java language.
The programs that we will be using in this tutorial require a basic knowledge of Java. Unfortunately, the scope of this

http://developer.android.com/index.html
http://developer.android.com/training/index.html
http://docs.oracle.com/javase/tutorial/

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 3

document does not allow for a detailed examination of the Java programming language. However, the Oracle
Corporation maintains an excellent, free online Java tutorial:

http://docs.oracle.com/javase/tutorial/

Students are encouraged to review the online Java tutorial before they attempt to try the exercises in this training
manual. It will be helpful if students have a basic knowledge of Java to complete the exercises in this manual.
Students do not have to be Java experts, but should understand the basic syntax of java and be familiar with concepts
such as classes, members, methods and program structure.

3 Installing Android Studio
Note: This training manual contains instructions on how to install the Android Studio

software onto your PC. This information is provided to help you with the installation of
the software, however, the screen shots and links in this document might be out of date.

Android Studio Installation Procedure

1. Before continuing you should first check
the list of system requirements on the
Android developer’s website to verify
that your system satisfies the list of
minimum requirements:

http://developer.android.com/sdk/index.html#Requirements

You will need to download and install the Java Development Kit (JDK) onto your computer, before installing the
Android Studio software.

The JDK software can be downloaded from the Oracle Java Standard Edition web page:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

2. Click on the Download button located
below the text “JDK” to jump to the JDK
download page.

http://docs.oracle.com/javase/tutorial/
http://developer.android.com/sdk/index.html#Requirements
http://www.oracle.com/technetwork/java/javase/downloads/index.html

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 4

3. On the JDK download page, find the
correct download package for your
computer (Windows, Linux or Mac and
x86 or x64).

Accept the license agreement, then click
on the appropriate download link for the
desired package.

Note that the JDK download page might
look slightly different from the one
shown here.

4. Once you’ve downloaded the appropriate
JDK package, run the package and
follow the on-screen instructions to
install the JDK software

The default options are okay on most
computers.

5. After the install has completed you
should get a message that it was
successful. Select Close.

Once you have successfully installed the JDK software, you can go to the Android developer’s website to download
and install Android Studio.

https://developer.android.com/studio/index.html

https://developer.android.com/studio/index.html

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 5

6. Click on the green “DOWNLOAD
ANDROID STUDIO” button to start the
download process. Accept the default
settings throughout the install process.

7. After clicking the download button, a
pop-up will appear asking you to agree
to the terms and conditions.

Read the terms and check the accept
terms box to continue.

Click the Download Android Studio
Button. Your page will redirect to provide
installation instructions.

8. Once the setup package has
downloaded, launch the application and
follow instructions to install Android
Studio.

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 6

9. Once Android Studio has installed you
will need to install the Android
Marshmallow SDK.

First run Android Studio. If the
“Welcome to Android Studio” dialog is
displayed, drop down the configure
menu and select SDK Manager

Otherwise, select the SDK Manager from
the menu:
Tools > Android > SDK Manager

10. In the SDK Manager window, select
“Android 6.0 (Marshmallow)” API level
23, Then click the “Apply” button.

Follow the prompts to install the
updates

11. When this process completes, select the
“SDK Tools” tab, and click the “Show
Package Details” checkbox at the
bottom right of the SDK Manager. Under
the Android SDK Build-Tools section,
select version 23.0.3 and click “Apply”
again and allow the installation to
complete

Click OK to close the settings window and close Android Studio. Android Studio is now installed and set-up.

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 7

4 Installing the FIRST Global SDK
After successfully installing Android Studio in Section 3 above, the next task is to download and import the FIRST Global
Software Development Kit (SDK). The FIRST Global SDK is available as an Android Studio project folder. When you
download this folder to your computer and then import it into the Android Studio IDE, you can use this project to
customize, build and install the FIRST Global Robot Controller app.

An operational mode (aka, “Op Mode”) is a code module that contains instructions that customize the behavior of a
robot. Teams can use the FIRST Global SDK to create their own Op Modes to program their robots to compete in FIRST
Global matches.

The FIRST Global SDK includes the libraries that are needed to communicate with the robot hardware, plus it has a host
of sample Op Modes than can be copied and used to customize a robot’s behavior. The SDK also includes the source
code and resource files that define the look and behavior of the Robot Controller app.

The FIRST Global SDK can be downloaded from a GitHub repository. GitHub is a web-based version control company
that lets individuals and organizations host content online. In order to access the FIRST Global software, you will need
to have a GitHub account.

Advanced GitHub Users: This document assumes that the user is a novice with respect
to using GitHub and the git version control software. If you are a GitHub power user,

you can use git to create a local copy of the ftc_app repository as you normally would.

Installing the FIRST Global SDK from GitHub

1. Create a GitHub account if you don’t
already have one: https://github.com/

Login and go to the FIRST Global public
repository:
https://github.com/FIRST-Global/ftc_app

2. From the main repository web page, click
on the “releases” link to jump to the
Releases page for the repository.

The Releases page should list the available
software releases for the repository. The
latest release should be displayed near the
top of the page.

https://github.com/
https://github.com/FIRST-Global/ftc_app

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 8

3. Each software release should include a
Downloads section that you can use to
download the software that you will need
to program your robot.

Click Source Code(zip) link to
download the compressed Android Studio
Project

4. Find the zip file you just downloaded and
unzip the contents.

You may want to move the file to a more
convenient location before unzipping.

For Window’s users, right click on the file
and select “extract all” from the menu.
Windows should prompt you to select a
destination for the extracted project folder.

5. After the extraction process is complete,
verify that the project folder was
successfully extracted to its target
destination.

Remember this file location. You will need
it later.

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 9

Now that we have successfully extracted the contents of the archived file, you are ready to import the FIRST Global
project into Android Studio.

6. launch the Android Studio software on your
computer. On the main Android Studio
Welcome screen, select the option to
“Import project (Eclipse, ADT, Gradle, etc.)”
to begin the import process.

7. Android Studio will ask you to select the
project folder that you would like to import.

Use the file browser in the pop up dialog
box to locate and then select the folder
that you extracted step 5.

Make sure you select the extracted project
folder (and not the .ZIP file which might
have a similar name to the extracted
folder).

Hit the “OK” button to import the selected
project into Android Studio

8. It might take Android Studio several
minutes to import the project. Once the
project has been successfully imported,
the screen should look similar to this.

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 10

9. Select “Settings…” from the File menu.
Then select “Instant Run” under the
“Build, Execution, Deployment”
dropdown and disable it by de-selecting
the checkbox at the top of the dialog.

5 Using your Robot
Now that you’ve successfully configured your development environment on your computer, let’s use the FIRST Global
software to create an op mode that will allow us to learn the basics of how to get you working with the software.

Before you begin, you must create a configuration for your robot. The FIRST Global Control System Startup guide on the
FIRST Global website (http://first.global/resources/technical-information/robot-kit-manuals) describes how to create a
hardware configuration for your robot. The remainder of this document assumes that you have created a hardware
configuration that consists of two motors named “left_drive” and “right_drive”.

5.1 Creating an Op Mode

We will use Android Studio to create an Op Mode that can be used to drive the Practice-Bot robot. Let’s take a look at the
Android Studio user interface (Figure 2). In the left hand side, there should be a Project pane that shows the Project
Browser. If you do not see the Project Browser, click on the word Project on the left hand border to expand the pane and
display the Browser.

Figure 2: Click on the Project tab to make the Project Browser appear or disappear.

http://first.global/resources/technical-information/robot-kit-manuals

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 11

For the FIRST Global project, there should be two packages in the Project Browser. The FtcRobotController package
contains example Op Modes for different types of robots. We are going to create a new Op Mode in the TeamCode
package. The TeamCode package is where your team’s custom op modes and other source files should reside.

Use the project browser to find the TeamCode->java->org.firstinspires.ftc.teamcode folder (Figure 3). Right click on
that folder and select New->Java Class

Figure 3: Create a new Java class in the org.firstinspires.ftc.teamcode folder.

In the Create New Class dialog, enter the name of the Op Mode as FirstOpMode and enter the Superclass as
LinearOpMode (Figure 4).

Figure 4: Enter the Op Mode name and Superclass

Select the “OK” button and Android Studio will create your class file. The LinearOpMode class will show up red since
Android Studio does not know where to find this class. You must import the file containing this class definition.
Android Studio created an import statement in the file “import LinearOpMode;”. This should be changed to:

import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 12

You will also need to import com.qualcomm.robotcore.eventloop.opmode.TeleOp to obtain the TeleOp Java
annotation which will tell the robot controller that this Op Mode should be categorized as a TeleOp or manually
controlled Op Mode. The TeleOp annotation should appear just before your class definition and contains a “name” and
“group” parameter. The name parameter is the name that will be displayed on the driver station and the group
parameter defines a group that this Op Mode will appear under. Enter this annotation as follows:

@TeleOp(name=”My First Op Mode”, group=”Practice-Bot”)

Your file should now appear as below (Figure 5).

Figure 5 – Op Mode

Notice that Android Studio underlined your class definition in red. It is notifying you of an error in the source code. If
you let the cursor hover over this line android studio will tell you what the error is (Figure 6).

Figure 6: The copied file should now appear in the destination folder.

LinearOpMode is an abstract class that declares a method called ‘runOpMode()’ that must be implemented by your
OpMode class. First, we will declare some class member variables to represent the hardware on our robot. The
Practice-bot has two motors so we will declare one member variable to represent each motor, a leftMotor variable
and a rightMotor variable both of type DcMotor. If we start typing ‘private D’ Android Studio will make
suggestions for the complete class context (Figure 7).

Figure 7 – Android Studio will suggest a class completion.

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 13

DcMotor should appear in the suggestion list. Select this and Android Studio will complete the class name and
automatically add the appropriate import statement to your file. Name the first motor leftMotor and then repeat to
add the rightMotor definition. These two variables are declared private since they will only be accessed from within
this class. The declarations should look like the following:

 private DcMotor leftMotor;

 private DcMotor rightMotor;

Your runOpMode() method will run continuously in a loop and perform whatever functionality you specify. As long as
your Op Mode is doing something the Android operating system will try to keep your Op Mode active in the CPU. This
will tie up one of the cores of the CPU with the Op Mode which may prevent other important processing from occurring.

It is advisable to periodically give up your CPU time to allow other tasks to run. For this purpose we will create a
function waitForTick() which will call a sleep() method on the current thread and tell the operating system that it
can swap your process out. First create a private member variable to keep track of elapsed time as follows:

private ElapsedTime period = new ElapsedTime();

You must also import com.qualcomm.robotcore.util.ElapsedTime for the ElapsedTime definition (or use the
Android Studio auto-complete function as with the motor definitions).

Then enter the following private method into your op mode:

/***

 *

 * waitForTick implements a periodic delay. However, this acts like a metronome

 * with a regular periodic tick. This is used to compensate for varying

 * processing times for each cycle. The function looks at the elapsed cycle time,

 * and sleeps for the remaining time interval.

 *

 * @param periodMs Length of wait cycle in mSec.

 */

private void waitForTick(long periodMs) throws java.lang.InterruptedException

 {

 long remaining = periodMs - (long)period.milliseconds();

 // sleep for the remaining portion of the regular cycle period.

 if (remaining > 0) {

 Thread.sleep(remaining);

 }

 // Reset the cycle clock for the next pass.

 period.reset();

}

This method is declared private since it is only intended to be used from within this class. You will call this function on
each iteration of the loop to tell the operating system that your process can be swapped out. The parameter passed to
this function indicates that your process wants to run every periodMs milliseconds. This method will adjust the sleep
time to compensate for processing time spent in your loop. In other words, if you want to run every 40 milliseconds and
your processing time was 15 milliseconds this method will sleep for 25 milliseconds (40 – 15).

The java.lang.interrupted exception may be thrown from the Thread.sleep() method so we must either
handle it or declare it as an exception that may be thrown from this method. In this case we will allow it to be thrown
out of this method since it is telling us that our thread has been interrupted and should terminate. We will allow this to
be handled from our runOpMode() method.

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 14

Now we can create the runOpMode() method. Since this method is overriding an inherited method we will use the Java
@override annotation. This annotation is optional but will help the compiler inform you of potential errors such as
return type or parameter mismatches or misspellings. Add the following code to your op mode (this will be explained in
detail below):

@Override

public void runOpMode() {

 double left = 0.0;

 double right = 0.0;

 leftMotor = hardwareMap.dcMotor.get("left_drive");

 rightMotor = hardwareMap.dcMotor.get("right_drive");

 rightMotor.setDirection(DcMotorSimple.Direction.REVERSE);

 // Set all motors to zero power

 leftMotor.setPower(0);

 rightMotor.setPower(0);

 // Send telemetry message to signify robot waiting;

 telemetry.addData("Say", "Hello Driver"); //

 telemetry.update();

 // Wait for the game to start (driver presses PLAY)

 waitForStart();

 try {

 // run until the end of the match (driver presses STOP)

 while (opModeIsActive()) {

 // Run wheels in tank mode (note: The joystick goes negative when

 // pushed forwards, so negate it)

 left = -gamepad1.left_stick_y;

 right = -gamepad1.right_stick_y;

 leftMotor.setPower(left);

 rightMotor.setPower(right);

 // Send telemetry message to signify robot running;

 telemetry.addData("left", "%.2f", left);

 telemetry.addData("right", "%.2f", right);

 telemetry.update();

 // Pause for metronome tick. 40 mS each cycle = update 25 times

 // a second.

 waitForTick(40);

 }

 }

 catch (java.lang.InterruptedException exc) {

 return;

 }

 finally {

 leftMotor.setPower(0);

 rightMotor.setPower(0);

 }

}

This Op Mode retrieves the motor definitions from the hardwareMap member variable. This member variable is
inherited from the OpMode class and contains all of the hardware items that were defined in your configuration. These
hardware objects are retrieved using the names you provided when the robot was configured. There are separate device
map lists in the HardwareMap for each type of device supported. In this case we are looking for motors so we use the
hardwareMap.dcMotor list.

We set the direction of the right motor to reverse as explained in the Software Tool Overview video on the FIRST Global
website (http://first.global/resources/technical-information/robot-kit-instructional-videos). Since we are referring to an

http://first.global/resources/technical-information/robot-kit-instructional-videos

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 15

enumeration (Direction) defined in the DcMotorSimple class we must also add the following import directive to
imports at the top of our file:

 import com.qualcomm.robotcore.hardware.DcMotorSimple;

We then set the power for both motors to ‘0‘ to ensure that they are not moving and we send a telemetry message to the
driver station to indicate that the robot is ready to go. The waitForStart() method is then called to wait until the
driver presses the play button.

The next two statements establish a try block and the main Op Mode loop. The loop will continue to execute until the
Op Mode is stopped by the press of the stop button or an exception being thrown. Since we know that the
java.lang.InterruptedException may be thrown by the waitForTick method we must implement a try block
and catch this exception. For reasons explained later it is good practice to use a try block in Java to protect resource
allocation or global setting changes.

The next four lines of code retrieve the left and right joystick values from the controller. This Op Mode is assuming only
one driver so we take the values from the gamepad1 member of the OpMode class. There is also a gamepad2 member
for when two gamepads are used. When the joysticks are pressed up they return a negative value which is not intuitive
so these values are negated to make them easier to deal with. We then set the left and right motor power to the value
retrieved from the joysticks. The joysticks return a value in the range of -1.0 to 1.0 which is the same range the motor
controller setPower() function is expecting so no further conversion is required.

We then send some data to the driver station through telemetry calls to display the current motor power on the driver
station. The last part of the Op Mode loop is to call the waitForTick() method. We pass a period of 40 ms so that
our loop will execute 25 times per second.

The catch block catches the java.lang.InterruptedException which tells us that our thread has been interrupted
and should terminate. We simply return here as there is no other specific error handling to be done. Any other
unexpected exception will be thrown from our Op Mode and caught at a higher level where a message will be displayed
to the Driver Station.

The finally block allows us to do any clean up that may be needed. The Java language guarantees that any code in the
finally block will be executed at the end of a try block regardless of how the try block was terminated (normally, through
an exception, return, break, etc.) This gives us a good opportunity to release any allocated resources and restore global
settings changed in our Op Mode. We set the power on both motors to 0 to ensure that our robot is at a complete stop
when the Op Mode terminates.

5.2 Building the Robot Controller App

We are now ready to build the Robot Controller App with our new Op Mode. The complete source code should look
something like the following:

package org.firstinspires.ftc.teamcode;

import com.qualcomm.robotcore.eventloop.opmode.LinearOpMode;

import com.qualcomm.robotcore.eventloop.opmode.TeleOp;

import com.qualcomm.robotcore.hardware.DcMotor;

import com.qualcomm.robotcore.hardware.DcMotorSimple;

import com.qualcomm.robotcore.util.ElapsedTime;

/**

 * Created by tjones on 4/3/2017.

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 16

 */

@TeleOp(name="My First Op Mode", group="Practice-Bot")

public class FirstOpMode extends LinearOpMode {

 private DcMotor leftMotor;

 private DcMotor rightMotor;

 private ElapsedTime period = new ElapsedTime();

 /***

 *

 * waitForTick implements a periodic delay. However, this acts like a metronome

 * with a regular periodic tick. This is used to compensate for varying

 * processing times for each cycle. The function looks at the elapsed cycle time,

 * and sleeps for the remaining time interval.

 *

 * @param periodMs Length of wait cycle in mSec.

 */

 private void waitForTick(long periodMs) throws java.lang.InterruptedException {

 long remaining = periodMs - (long)period.milliseconds();

 // sleep for the remaining portion of the regular cycle period.

 if (remaining > 0) {

 Thread.sleep(remaining);

 }

 // Reset the cycle clock for the next pass.

 period.reset();

 }

 @Override

 public void runOpMode() {

 double left = 0.0;

 double right = 0.0;

 leftMotor = hardwareMap.dcMotor.get("left_drive");

 rightMotor = hardwareMap.dcMotor.get("right_drive");

 rightMotor.setDirection(DcMotorSimple.Direction.REVERSE);

 // Set all motors to zero power

 leftMotor.setPower(0);

 rightMotor.setPower(0);

 // Send telemetry message to signify robot waiting;

 telemetry.addData("Say", "Hello Driver"); //

 telemetry.update();

 // Wait for the game to start (driver presses PLAY)

 waitForStart();

 try {

 // run until the end of the match (driver presses STOP)

 while (opModeIsActive()) {

 // Run wheels in tank mode (note: The joystick goes negative when pushed forwards,

so negate it)

 left = -gamepad1.left_stick_y;

 right = -gamepad1.right_stick_y;

 leftMotor.setPower(left);

 rightMotor.setPower(right);

 // Send telemetry message to signify robot running;

 telemetry.addData("left", "%.2f", left);

 telemetry.addData("right", "%.2f", right);

 telemetry.update();

 // Pause for metronome tick. 40 mS each cycle = update 25 times a second.

 waitForTick(40);

 }

 }

 catch (java.lang.InterruptedException exc) {

 return;

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 17

 }

 finally {

 leftMotor.setPower(0);

 rightMotor.setPower(0);

 }

 }

}

To ensure that your op mode builds select Build->Rebuild Project in Android Studio. If you select the “Gradle Console”
(on the bottom right of the Android Studio window) you should see something like the following:

It is now time to connect your Control Hub to your computer. When you connect your Control Hub to the USB port of
your computer ensure that you are connecting to the micro-USB on the top of the Control Hub, not the mini-USB on the
bottom.

For Windows 7 you will need to install the ADB driver for the board. Follow the instructions on this website:
https://discuss.96boards.org/t/step-by-step-instruction-to-install-adb-usb-driver-on-windows/777.

For Windows 10, you should not need to install a driver. If you have problems, see the troubleshooting section at the
end of this document.

 Once the driver is installed and the control hub is connected you can install the app. Select the green arrow (Run
button) on the Android Studio toolbar. Android Studio will then prompt you to select a target device to install the Robot
Controller app. Your screen might look something like the image shown below (Figure 8).

https://discuss.96boards.org/t/step-by-step-instruction-to-install-adb-usb-driver-on-windows/777

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 18

Figure 8 - Android Studio might prompt you for the target device.

Make sure that you select the correct target device if more than one device is displayed. When you select the OK button
Android Studio will first perform a build. You will then see a status bar at the bottom of Android Studio that says
“Installing APK”. Do not disconnect the Control Hub until this process finishes.

When the install is finished you can disconnect the Control Hub from the USB and start the Driver Station app on the
(paired) tablet. Your Op Mode will now be selectable from the TeleOp modes menu on the Driver Station.

FIRST Global Java SDK Startup Guide - Rev 1 Copyright 2017 REV Robotics, LLC 19

6 Troubleshooting
If you have problems building or installing the Robot Controller software Try the following

Troubleshooting

1. Make sure you have all of the latest updates to your operating system. This process is specific to the OS version,
see the Windows documentation for installing updates.

2. On Windows 10 you are not able to see the
Control Hub through ADB

Open the Device manager.

If your device driver shows up as “ADB
Interface” or “Android Device”. Right click
on it and select “Update Driver Software”.
Make sure you are connected to the
internet so Windows can search for the
driver online.

Windows should find an appropriate driver.
And it should show up as
Dragonboard/Lynx or as Kedacom KDB
Composite Interface.

3. APK does not run and light stays blue.

Verify that “Instant Run is disabled”
Select “Settings…” from the File menu.
Then select “Instant Run” under the “Build,
Execution, Deployment” dropdown and
disable it by de-selecting the checkbox at
the top of the dialog.

